Polynomial functions as splines
نویسندگان
چکیده
منابع مشابه
Variable degree polynomial splines are Chebyshev splines
Variable degree polynomial (VDP) splines have recently proved themselves as a valuable tool in obtaining shape preserving approximations. However, some usual properties which one would expect of a spline space in order to be useful in geometric modeling, do not follow easily from their definition. This includes total positivity (TP) and variation diminishing, but also constructive algorithms ba...
متن کاملWeighted Integrals of Polynomial Splines
The construction of weighted splines by knot insertion techniques such as deBoor and Oslo type algorithms leads immediately to the problem of evaluating integrals of polynomial splines with respect to the positive measure possessing piecewise constant density. It is for such purposes that we consider one possible way for simple and fast evaluation of primitives of products of a polynomial B-spl...
متن کاملPolynomial cubic splines with tension properties
Article history: Available online 30 June 2010
متن کاملPolynomial splines over hierarchical T-meshes
In this paper, we introduce a new type of splines—polynomial splines over hierarchical T-meshes (called PHT-splines) to model geometric objects. PHT-splines are a generalization of B-splines over hierarchical T-meshes. We present the detailed construction process of spline basis functions over T-meshes which have the same important properties as B-splines do, such as nonnegativity, local suppor...
متن کاملFree-Knot Polynomial Splines with Confidence Intervals
We construct approximate confidence intervals for a nonparametric regression function, using polynomial splines with free-knot locations. The number of knots is determined by generalized cross-validation. The estimates of knot locations and coefficients are obtained through a non-linear least squares solution that corresponds to the maximum likelihood estimate. Confidence intervals are then con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Selecta Mathematica
سال: 2019
ISSN: 1022-1824,1420-9020
DOI: 10.1007/s00029-019-0476-9